Low Temperature SMT Solder Evaluation
i4.0, Are We Really Ready?
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Convergence of Technologies and Standards Across the Electronic Products Manufacturing Industry to Realize Smart Manufacturing
Rework Practices for MicroLEDs and Other Highly Miniaturized SMT Components
pH neutral Cleaning Agents - Market Expectation & Field Performance
Concentration Monitoring & Closed Loop Control
Achieving Solder Reliability for LGA Ceramic Image Sensors
Latest Industry News
Electronics Industry Welcomes Supply Chain Review
North American PCB Industry Sales Begin 2021 Up 4%
Connected Cars: Show Me The Money
Allowing Machines to Listen, and Understand
China guides its self-driving startups into the fast lane
Treat Smart City Tech like Sewers, or Better
Target expands Apple partnership, will open mini shops inside stores
Suggested Stencil Wipe Frequency?

Innovative Panel Plating for Heterogeneous Integration

Innovative Panel Plating for Heterogeneous Integration
This paper will show that improvements in feature density, deposition uniformity and void free via filling can be achieved in large panel processing.
Production Floor


Authored By:

Richard Boulanger, Jon Hander, Robert Moon, Richard Hollman
Billerica, Massachusetts


The migration to large panel substrates in advanced packaging applications is principally motivated by cost considerations. However, it is occurring at a time when package processing is becoming more complex and demanding. New package architectures featuring heterogeneous integration (HI), such as Intel's EMIB, TSMC's INFO, and many others, present challenging new requirements in the fabrication process. With feature sizes less than 10 microns, increasing number of patterned layers, and vias between layers, these demanding process steps must be realized on wafer and panel substrates alike.

The traditional equipment set for large panel substrates typically uses bulk processing and is not designed for wafer-like process requirements. Thus, a new class of process tool is required to bridge this technology gap, maintaining the economy of scale of large panel tools while meeting the requirements of current and future package architectures. For electroplating process steps, a vertical tool architecture running a single panel per process cell makes it possible to directly apply advanced wafer plating technology to panel substrates.

Individual panels are loaded in a rigid holder to minimize warpage and provide the large currents necessary for plating large areas. An overhead transport conveys the loaded panels to a series of cells which carry out the necessary steps in the deposition process. The initial step is a vacuum prewet, which prevents the occurrence of air bubbles in deep features when the panel is introduced into a plating bath. A series of plating cells allows a stack of different metals to be deposited in a single pass through the tool. Each cell is customized for a particular metal and, with features such as multiple anode zones and pattern-specific shields, can be customized for each device. Efficient agitation is also adapted from wafer plating tools to provide the fastest and best quality deposition processes.

This paper will show that the improvements in feature density, deposition uniformity and void free via filling that are required for heterogeneous integration can be achieved in large panel processing, providing the desired cost reduction relative to wafer processing for interposers and other package structures.


As traditional monolithic integration is being replaced by heterogeneous integration in electronic packaging, both silicon interposers and printed circuit boards (PCBs) are being considered. Silicon interposers exist today but are expensive (35- 40 cents per cm2 per layer). PCBs are less expensive but do not quite have the technology for the required interconnect density. We have demonstrated how a wafer plating tool can be reinvented to plate panels while achieving high density circuitry to reduce the costs and obtain unparalleled plating uniformity.

Initially Published in the SMTA Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Suggested Stencil Wipe Frequency?
Can Tape Residue Contaminate a Clean Tank?
When To Use Adhesive To Bond SMT Components
Reflow Oven Zone Separation Challenges
PCBA Inspection Concerns
How To Clean a Vintage Circuit Board Assembly?
Keys for Moisture Sensitive Device Control
When is it Time to Switch from Manual Assembly to Automation?
Ask the Experts
How to Remove Oxidization from SMT Component Leads?
Cause of Green/Blue Oxide Buildup
Rework of Underfilled Array Packages
Acceptable Conductor Repair
Class 3 Cleaning Requirements
Cleaning No-Clean Solder Paste
Concerns With Silver Finish Component Leads
BGA Component Cleaning Spec