|
![]() |
|
|
Stencil Printing of Small Apertures
Production Floor |
|
Authored By:William E. Coleman Ph.D. Photo Stencil, Colorado Springs, CO USA TranscriptMany of the latest SMT assemblies for hand held devices like cell phones present a challenge to process and manufacturing engineers with the introduction of miniature components such as .3 millimeter CSP and micro BGA devices, as well as microchip component devices. Printing these miniature devices along with more conventional SMT devices like .5mm QFPs and midsize passives, in addition to RF shields is a challenge. Whereas a 4mil or 5 mil thick stencil provides good paste transfer for the normal SMT devices, stencils with this thickness have very low area ratios for the miniature devices. This paper examines stencil technologies (including laser and electroform), aperture wall coatings (including Nickel-Teflon coatings and Nano-coatings), and how these parameters influence paste transfer for miniature devices with area ratios less than the standard recommended lower limit. A matrix of print tests is utilized to compare paste transfer and measure the effectiveness of different stencil configurations. SummaryMany of the latest SMT assemblies for hand held devices like cell phones present a challenge to process and manufacturing engineers with the introduction of miniature components such as .3 mm CSP and uBGA devices as well as 0201 and 01005 chip component devices. Printing these miniature devices along with more conventional SMT devices like .5mm QFP's and 0603 and 0805 passives, in addition to RF shields is a challenge. Whereas a 4mil (100 micron) or 5 mil (125 micron) thick stencil provides good paste transfer for the normal SMT devices, stencils with this thickness have very low Area Ratios for the miniature devices. For example a .3mm CSP with a 7.5 mil (190 micron) has a .47 Area Ratio for a 4 mil thick stencil. This paper will examine stencil technologies (including Laser and Electroform), Aperture Wall coatings (including Nickel-Teflon coatings and Nano-coatings), and how these parameters influence paste transfer for miniature devices with Area Ratios less than the standard recommended lower limit of .5. A matrix of print tests will be utilized to compare paste transfer and measure the effectiveness of the different stencil configurations. Area Ratios ranging from .32 to .68 will be investigated. ConclusionsGoal of this study: Determine if Special Coatings can improve Paste transfer for Apertures with Area Ratio's less than .5. The Electroform Stencil with Nano-Coat was the only stencil tested able to achieve this goal. This stencil is a good candidate when small (01005 and/or .3mm pitch CSP components are coexistent on the same PCB. Below is a overall summary of the results:
Initially Published in the IPC Proceedings |
|
Comments
|
|
|
|
![]() |