Research
New Approaches to Develop a Scalable 3D IC Assembly Method
Testing PCBs for Creep Corrosion
Embedded Fibers Enhance Nano-Scale Interconnections
Expanding IEEE Std 1149.1 Boundary-Scan Architecture
Final Finish Specifications Review
Liquid Dispensed Thermal Materials for High Volume Manufacturing
Vapor Phase Quality Improvement
The Quest for Reliability Standards
MORE RESEARCH
Latest Industry News
Future Manufacturing: Bracing for and Embracing the Postpandemic Era
China's digital yuan could pose challenges to the U.S. dollar
Intel's planned comeback: 10nm production now surpassing 14nm, 7nm remains a work in progress
Apple said to be testing a new external display with a dedicated A13 Bionic SoC
3 Tips for Making Supply Chain Management More Sustainable
Smartphones Could Be Next in Global Chip Shortage
Electrical Slip Ring, All You Need to Know
Why Manufacturers Will Embrace Surface-Mount Tech--Sooner or Later
MORE INDUSTRY NEWS

Stencil Aperture Design for Next Generation Ultra Fine Pitch Printing



Stencil Aperture Design for Next Generation Ultra Fine Pitch Printing
The work reported here represents the start of a series of experiments to help further understand the significance of square vs circular aperture formats.
Production Floor

DOWNLOAD

Authored By:


Mark Whitmore, Jeff Schake & Clive Ashmore
DEK Printing Machines Ltd
11 Albany Road, Weymouth
Dorset, DT4 9TH, UK

Summary


Miniaturisation is pushing the stencil printing process. As features become smaller, solder paste transfer efficiency is becoming more critical.

In latest research work, actual paste deposit volumes and transfer efficiency have been monitored and compared for both square and round apertures with area ratio's ranging from 0.20 thru to 1.35. This covers apertures sizes of between 100 and 550 microns in a nominal 100 micron thick stencil foil. In addition, the effect of ultrasonically activated squeegees has been assessed as part of the same experiment. A further comparison has also been made between type 4 and type 4.5 solder paste aswell.

The data presented here will help provide guidelines for stencil aperture designs and strategies for ultra-fine pitch components such as 0.3CSP's.

Conclusions


The next generation of ultra fine pitch components will place extreme demands on the stencil printing process. The requirement for printing solder paste through stencil apertures with area ratios below 0.5 will become common place. The data presented here indicates that with judicial choice of stencil design and materials it will be possible for designers to work with aperture area ratios down to 0.4.

To optimise a process it is becoming increasingly important that an engineer has a good understanding of stencil aperture design specification, material properties and process options/aids available to him. The interactions between all of these facets is becoming more complex and critical to the successful implementation of a process.

Initially Published in the SMTA Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Moisture Barrier Bag Issues
Trouble With Skewed DPAK Components
Can Mixing Wave Solder Pallets Cause Contamination?
How to Reduce Voiding on QFN Components
Calculating Failure Rate During Rework
Do BGA Components Warp During Reflow?
Can Water Contamination Cause Failure?
Why Uneven Conformal Coating?
MORE BOARD TALK
Ask the Experts
ENIG Solderability Issues
Very Low Temp PCBs
0201 Pick & Place Nozzle Plugging
IPC-A-610 Class 3 - IPC-A-600 Class 2
BGA Solder Ball Collapse
Baking After Cleaning Hand Placed Parts
What is the IPC Definition of Uncommonly Harsh?
Solder Balling Splash After Reflow
MORE ASK THE EXPERTS