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ABSTRACT 
A major problem in circuit board remanufacturing is the 
identification of parametric faults from age or stress to the 
individual passive components. We propose a deep machine 
learning system for simulating and identifying such faults. A 
simulated dataset is generated for the most common faults in 
a circuit. This dataset is used to train deep machine learning 
classification algorithms to identify and classify the faults. 
The accuracy of system is measured by comparing with real 
circuit boards in operation.  

Keywords: Fault Diagnosis, Deep Machine Learning, Circuit 
Simulation, Neural Networks, Pattern Recognition & 
Classification. 

INTRODUCTION 
In the industry of post-manufacturing circuit board repair, 
there are different problems than those in the manufacturing 
process. While in manufacturing, issues are caused either by 
procedural errors or by design discrepancies, post-
manufacturing faces problems of components falling outside 
of their specifications from age or overuse. These are called 
parametric faults and are difficult to diagnose compared to 
other faults which are more catastrophic.  

Most of the current research in fault diagnosis deals with 
manufacturing, but post-manufacturing is also important. 
Many consumers would rather buy used products when the 
cost of new parts is high. Buying used parts can also be 
necessary when some components of mission critical systems 
fail and the original manufacturers no longer sell the 
replacements. Work in post-manufacturing can help guide 
new applications as well. Knowing how circuits fail after 
years of use can guide designs for better performance and 
durability. Companies that sell lasting, quality products earn 
reputations for doing so and their products are desired in the 
marketplace. 

Despite the obvious differences, much of the research in the 
area of manufacturing can be applied to post-manufacturing 
as well. Some current work [1], [9] focuses on digital circuits 
where the use of machine learning methods is not exploited. 
For these circuits, traditional methods have been sufficient for 
finding faults. For mixed-signal circuits, there are many more 
possible states since the components have a continuous range 
of values they can take on, so other studies [2],[11] have used 
machine learning methods like genetic algorithms to find 
faults. This study uses a different machine learning approach 
for similar circuits.  Many other works in this area [4] 
incorporate information about the circuit layout in their 

program at either the logic level, the schematic level, or the 
physical level. This system, however, only passes the circuit 
inputs and outputs into the network. This prevents the network 
from needing to understand electrical components on a 
universal level but makes it so that the network would need to 
be retrained whenever it needed to be applied to a new circuit. 

Our method of fault prediction uses simulation of faulty circuit 
components to generate a dataset for a deep machine learning 
classification algorithm. After the faults are simulated, the 
results are framed into a database to provide supervised 
training for our deep network. Results are compared against 
the real circuit with known faulty components to verify the 
accuracy of our simulations. 

SIMULATION 
For this study, we simulated a circuit board which is used and 
remanufactured in actual industry. The schematic for this 
board can be seen in Figure 1. We chose this board 
specifically for its simplicity since it contains a limited 
number of components and can be simulated quickly without 
too much computing power. Despite being small, it still 
contains a variety of components which can be analyzed. 
These include both analog and digital components which are 
handled in different ways in the simulation. Using an existing 
circuit board allows the results from this study to be tested in 
a realistic situation and to prove the feasibility of this method 
for real operation.  

First, the most common possible faults for the circuit being 
examined are identified and considered as categories of 
faults. This study considers both parametric faults in analog 
components, where component parameters fall outside of 
their specifications, and logical faults in logic components. 
Our study considers the faults most commonly found in 
capictors which include an increased serial resistance or a 
decreased capacitace. These can be found in capacitors that 
have experienced dielectric breakdown from age or overuse 
[3]. Since many of the circuit boards repaired in the 
remanufacturing process are exposed to harsh conditions like 
constant use and exposure to the weather, such faults are 
common. Faults for logical components are considered using 
only a few high-level logical faults. For the case of the 
inverter shown in this study, we using the inverter being 
stuck-on and stuck-off as the possible cases. These are 
commonly seen in Integrated Circuits (IC) when connections 
within the IC are either bridged or broken by stress or age. 
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Figure 1. Schematic of the circuit used. 

For each category, we run simulations across a range of 
values for the faulty parameters. For capacitors, these are 
chosen to be capacitance values of 80% or less of the nominal 
capacitance and serial resistance values 200% or more of the 
nominal serial resistance as falling outside of that range will 
start to cause circuit failures [8]. For analog components, this 
method of simulation can generate thousands of examples of  
component behaviors ranging from just outside of acceptable 
values to catastrophic failure. Presumably, the amount of data 
which can be accumulated in this way is limited by how 
ridiculously out of specification a component can realistically 
be and how similar consecutive parameter values can be 
within the defined range while still providing useful 
information. The goal is to provide as many examples as 
possible of circuit configurations that could be found in the 
field since these will make the network adaptable to all of 
these situations. 

To represent the case where no component is faulty, 
simulations are performed for every component across the 
range of values which are considered to be within 
specifications. This is necessary to generate a comparable 
number of examples when the ranges of values for any one 
component are more rigidly bound than in the case of actual 
faults. Usually, the simulator needs to use much finer steps 
when iterating through parameters to generate enough data to 
keep up with the rest of the categories. Not having enough 
examples of this case could result in the network not being 
able to identify when there is not a fault. Having a no-fault 
case is a valuable feature which can prevent the network from 
having costly false alarms. Potentially, having this category 
can be avoided in a situation where the circuit being tested is 
known to have some fault and all possible faults are 
considered as categories. Eliminating the no-fault case could 
be done if there was a separate functional test of the circuit 
perform beforehand, but that is obviously not ideal.  

The same technique can be used for digital components 
which do not naturally have a large range of failure behaviors. 
Digital components can be represented by all of the 
individual transitors and how they behave in the circuit, but 
this is tedious to simulate and does not provide much benefit 
in a practical sense. Knowing exactly which transistor failed 
in a logic IC does not help the technician who is trying to fix 
the circuit. Without representing the digital components at a 
much lower level, faults can only be represented in a handfull 
of ways since their failures are not parametric in nature. The 

logic level of the component can only be considered to be 
stuck at high or stuck at low. However, we can still iterate 
through the acceptable values of the analog components for 
each logical fault in the same way as with the no-fault case. 
This way, enough examples can be generated to create the 
necessary ground truth. 

Every simulation creates an array of fault behaviors as 
characterized by the sequences of readings from different 
test-points in the circuit. Each test-point where voltage data 
is read from is chosen for being connected to the input and 
output connectors on the real circuit board. With this setup, 
the same connectors which are connected to the board during 
regular operation can be used to read important data from the 
board. Each test-point produces a sequence of data which is 
concatenated to form one channel in a block of sequences. 
This data block is saved and organized by the generated fault 
category. Each fault category ends up having hundreds of 
examples each with multiple sequences of test point data for 
a set time period. Organizing the data in this way makes it 
simple to pipe it into a deep learning network.  

DEEP LEARNING MODEL 
The goal of this study is to classify the sequences of voltages 
into the correct fault category. To accomplish this, we use a 
Long-Short Term Memory (LSTM) [5] model which is a 
Recurrent Neural Network (RNN) designed to analyze 
sequences in time. LSTMs are often used with analyzing 
spoken and written language [12] where patterns that the 
network has seen in the past can affect how it interprets the 
present information. These can also be applied to voltage data 
in analog circuits where readings from a single point in time 
cannot provide enough information for identifying faults. We 
also use a primitive form of time/frequency-LSTM (TF-
LSTM) [6]. This is done by including the Fast Fourier 
Transform (FFT) of the voltage-time data to give the network 
an impression of the differences in the frequency behaviors 
of the components. This is especially useful in our case where 
the effects that capacitors have on circuits can be extremely 
subtle if noticeable at all.  

In our model, several channels of voltage data are passed into 
an LSTM block as shown in Figure 2. This LSTM block 
contains multiple LSTM layers which take in a piece of the 
sequences representing the current moment and outputs from 
the previous LSTM layers acting as a memory of past events. 
Each layer has parameters which indicate the importance of 
past layers and affect how much a layer will weigh the past 
events. These parameters, along with others, are tuned to 
produce the lowest possible loss during training. The output 
from the final LSTM layer is then fed into a fully connected 
layer. The fully connected layer condenses the 
dimensionality of the network and produces a number for 
each fault category which correspond to how likely it finds 
that category to be the correct fault. The classification layer 
interprets which of those categories the proceeding layers 
have found most likely and returns it as the fault category. 
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Figure 2. Network architecture 

Since the LSTM uses supervised learning, it must learn how 
to tune its parameters to produce the desired result through 
examples which are provided at training time. To train the 
model, we feed in the fault behaviors data generated by our 
simulations as the training data and the corresponding faults 
as the associated labels. Each example contains a label 
designating which fault category it falls into and two 
sequences for every test-point: one for the voltage-time data 
and another for the magnitude-frequency data. In training, the 
network can run its classification algorithm on the input data, 
compare its answer against the provided label, and adjust the 
parameters of its algorithm accordingly. The network can 
repeat this process thousands of times to complete its training.  

The steady improvement due to this training process can be 
seen in Figure 3, where the accuracy (in blue) goes up, and 
the loss (in orange) goes down as more iterations are run. The 
improvements start to level off as the network reaches its 
optimal solution. More training iterations at this point provide 
little improvement. The darker lines running in the middle of 
the trends are the results from validation data. This data has 
not been used in training but is only for testing purposes. This 
validation trend is much more stable than the rest of the 
regular training results. This is because the regular data the 
network is trained on is randomly selected while the 
validation data has been evenly selected from all parts of the 
dataset. The peaks in accuracy come from selections of data 
that contain more examples which are towards the extremes. 
The troughs are from selections where component parameters 
are close to the threshold where they are no longer considered 
faults. This shows that the network can perform much better 
when given data from more extreme faults. Less catastrophic 
failures are more difficult for the network to find.  

 
Figure 3. Changing network accuracy and loss during 
training 

Once training has completed, the network can analyze data 
from a real circuit in operation and predict what single fault 
is present in the circuit. This post-training process, called a 
forward pass, is much less computationally expensive then 
the training process and can be performed relatively quickly. 
This is one of the advantages of a machine-learning 
algorithm. Although the computation required is burdensome 
to start, the final result is fairly efficient. This is especially 
important from a practical perspective where a test system 
needs to avoid costly hardware for it to be viable for real 
applications.  

RESULTS 
A number of different variations of the same architecture 
have been tested for their effectiveness in producing useable 
results. The standard method involved having five fault 
categories, one for no faults (F0) and two for each of the two 
capacitors in the circuit (F1-F4). Each capacitor had a 
category for having too large of a serial resistance (F1 and 
F3) and another for having too small of a capacitance value 
(F2 and F4). This network was able to capture the behaviors 
of some of the fault categories achieving an accuracy of 
60.0%. Being able to differentiate between these categories 
with this level of accuracy shows that the network was able 
to tune its parameters during training so that it can capture 
some of the circuit behavior. The area where the network falls 
short is in identifying the faults F0 and F4 as shown in Table 
1. This could be because the capacitor causing this fault has 
only a subtle effect on the circuit acting as a smoothing 
capacitor for high-frequency noise. The capacitor causing F1 
and F2, on the other hand, is a large value capacitor which 
the network has no problem identifying as the cause of the 
fault.  

Table 1. Results of five-category network test 

Fault Total Examples Correct 

F0 612 80 

F1 660 638 

F2 600 483 

F3 653 643 
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F4 611 5 

 

Although a component can have fail for different reasons, all 
will result in replacing the component for someone trying to 
repair that circuit. Because of this practical reality, a network 
was also trained that only had one fault category for each 
component. This network had two categories for the 
capacitors and one for the no-fault case. The network was still 
trained and tested using the same data from the different 
causes of the component failure, but these were all considered 
to be a part of the same fault category. This means both a 
small capacitance and a large serial resistance in the first 
capacitor would be considered put in the F1 category. The 
hope here is that the network can perform better when it does 
not need to waste resources on differentiating between 
categories which ultimately produce the same result.  

This network performed well as shown in Table 2. getting a 
total accuracy of 80.5%. Combining the categories from the 
same capacitors appeared to positively affect performance 
and having fewer categories to choose from greatly increased 
the chances of a correct answer from the network. One of the 
more surprising improvements was in F0. Despite not being 
combined with any other categories as compared to the last 
network, it has been helped by the reorganization and 
retraining. This could be because the network can dedicate 
more of its parameters towards classifying this fault with 
fewer categories to worry about. Still, F0 is the consistently 
the category these networks have trouble with. Since there is 
a hard line where we have considered components to belong 
in one of the other fault categories but the range of parameters 
in the training examples are still relatively continuous, this 
no-fault category ends up with many examples which are 
extremely similar to the fault categories. That makes these 
edge cases difficult for the network to categorize correctly.  

Alternatively, the same result could be accomplished by just 
combining the categories from the previous five-category 
network during the classification step instead of retraining a 
new network. Table 3. shows this method performs worse 
than the network trained for three categories achieving only a 
scaled accuracy of 68.1%. This supports the idea that the 
subtler details that can be gained by representing every fault 
separately do not help the network have a better 
understanding of each component as a whole.  

Table 2. Results of three-category network test   

Fault Total Examples Correct 

F0 612 277 

F1 630 606 

F2 632 625 

 

Table 3. Results of repurposing five category network  

Fault Total Examples Correct 

F0 612 80 

F1 660 648 

F2 600 483 

F3 653 650 

F4 611 610 

 

Comparing Table 3. to the results found in Table 1, there is a 
jump in the number of F4 examples that could be identified. 
This means that much of the inaccuracy in the regular five-
category network came from confusing F3 and F4, both 
parametric faults in the same capacitor. This could be because 
an increased serial resistance and a decreased capacitance can 
lead to some of the same circuit behavior. Combining these 
categories has also helped the retrained network in Table 2. 
since it did not need to tune its parameters for classifying 
between the two categories. Depending on the application, 
differentiating between these could be necessary, but for most 
cases it would not be and the increase in accuracy certainly 
makes this method more desirable. If such a network is 
needed, steps would need to be taken to improve the 
performance of the network for it to produce reliable results. 

Another network also included the inverter as a cause of 
faults. Looking at the inverter at the logic level, we 
considered two fault conditions: stuck on and stuck off (F5 
and F6). Adding the inverter could not help with finding the 
faults in capacitors but could help with the overall accuracy 
of the network since its faults are not parametric in nature as 
in the capacitors’ case and therefore, might be easier to 
diagnose. This will also provide a more comprehensive 
solution for fault diagnosis. By including logic components, 
a single network should be able to diagnose the faults for an 
entire board in a single pass. This network does a decent job 
as shown in Table 4. It still suffered from some of the same 
problems the other networks did. It still had trouble 
differentiating between the two different faults for the same 
capacitor in F3 and F4, and F0 was still a problem likely for 
the same reasons as discussed earlier. As expected, the 
network was able to perform well on the categories for the 
inverter which helped the network achieve an overall 
accuracy of 64.2% putting it above the previously shown 
five-category network in Table 1. 

Table 4. Results of seven-category network test 

Fault Total Examples Correct 

F0 612 59 

F1 660 655 

F2 600 557 

F3 653 0 

F4 611 306 

F5 611 611 

F6 611 611 

We also trained a network which included the inverter as a 
source of faults but considered only one fault for each 
component. This resulted in a network with four fault 
categories to choose from. Unlike in the case of detecting 
capacitor faults which has consistently improved with the 
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combination of their fault categories, the network 
performance suffered from having the two inverter cases 
combined into one fault as shown in Table 5. This is likely 
because while for capacitors, having an increased serial 
resistance and a decreased capacitance can result in similar 
behavior, the cases of an inverter being stuck-on or stuck-off 
obviously have significantly different effects on the circuit 
behavior. Despite this shortcoming, the network still 
achieved an accuracy of 74.7% providing a huge 
improvement over the seven-category model in Table 4. This 
means the improvements in the other categories made up for 
the losses in the inverter category.  

We also tried the same technique used for the other networks 
of combining the fault categories at the classification step. 
Although it has the advantage in the inverter category as 
shown in Table 6, this method fell short of the retrained 
method getting only a scaled accuracy of 64.0%. The 
difference here provides some insight into the advantages and 
disadvantages between these networks. Combining fault 
categories before training seems to help when there are more 
capacitors in the circuit. This rule could extend to other 
analog component as well. However, for logic components, 
the other method of combining categories after training, 
during the classification step, is better. A combination of the 
two methods could use different classification methods for 
the different types of components though this could be 
tedious for larger circuits. For a large circuit, one method 
would need to be chosen over the other depending on what 
components primarily make up the circuit.  

Table 5. Results of four-category network test 

Fault Total 
Examples 

Correct 

F0 612 143 

F1 630 626 

F2 632 632 

F3 611 455 

 

Table 6. Results of repurposing seven-category network 

Fault Total Examples Correct 

F0 612 59 

F1 660 656 

F2 600 561 

F3 653 326 

F4 611 306 

F5 611 611 

F6 611 611 

 

We were also able to use the network on the real circuit in 
operation. One of the faults was created by putting a 15Ω 
resistor in series with one of the capacitors. This is 
comparable to an old capacitor which has started to break 

down from years of wear. We were able to connect the circuit 
to a fixture that simulates the conditions the circuit would be 
under in regular operation and connected some of the input 
and outputs of the circuit to a digital oscilloscope. To confirm 
the accuracy of the simulated data for this circuit, we 
compared the data graphically, as shown in Figure 4, and 
found that our simulations were accurate. There are minor 
differences caused by some of the circuit properties which are 
not considered by the simulation, but they are close enough 
for the purpose of this study. After running the real 
observations through the network, we found it was able to 
successfully identify the cause of the failure from four other 
fault categories without ever seeing data from a real circuit 
before. This demonstrates the viability of this approach for 
real applications.  

 
Figure 4. Comparison of real data and simulated data 

The test-points chosen for this circuit were such that they 
were connected to the physical pin on the board which our 
fixture plugs into. Because of this, a slight modification of the 
fixture could allow this method to be used just by plugging 
the right cables into the connectors already on the board. This 
process could also be applied to any number of other circuits. 
If there is a schematic available for the circuit, it can be 
simulated, potential faults can be identified, and this process 
can be implemented. It takes a little bit of work to get started, 
but the benefits are enormous if this system is used on high 
value circuit boards.  

FUTURE WORKS 
The results found in this study are promising and could be 
expanded in future works. First of all, though the deep-
learning architecture shown in this paper uses advanced 
techniques such as LSTMs, it is still fairly simple having only 
one LSTM block with 40 hidden layers. Exploring what 
would be the most optimal network architecture for this 
application could make this method more viable. Adding 
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more layers could help the network represent more complex 
relationships in the circuit behaviors. Although LSTMs are 
designed for sequences in time, other papers [7] have been 
found to achieve some of the same effect without the use of 
RNNs when tested on machine translation tasks. Using other 
methods instead of LSTMs could make training faster if they 
are more easily parallelizable. Other machine learning 
methods could also be added to improve speed and efficiency 
of the training process.  

Also, this method involves training one deep-network for 
each circuit that needs to be analyzed. During training, the 
network captures the behavior of the specific circuit it is 
being trained for, so it cannot be applied to any other circuits 
without retraining. More studies can be done on the 
possibility of making a network that can identify faults in any 
circuit. Such a system would likely need to incorporate 
schematic information about the circuit as well as the inputs 
and outputs that this study has used. Those pieces of 
information together could possibly allow the network to 
understand how different components behave in general. An 
interesting part of this would be figuring out how to codify 
schematic information so that it can be passed in as an input 
to the network.  

In addition, this study has been performed on a small circuit 
which has proved that the concept works, but work has yet to 
be done on adapting it for larger circuits. As components start 
to have a smaller relative effect on the outputs of the circuit, 
their failures will be harder to detect. The network could be 
modified to capture these more subtle behaviors. Another 
problem that could arise is different components creating 
similar changes in the outputs of the circuit. The components 
shown in this study are far enough apart that they create 
noticeably different effects on the circuit, but in a larger 
circuit, this might not be the case.  

Finally, one of the limitations of the method shown in this 
study is that it only considers the case where there is one 
component failing in the circuit at a time. This was done to 
avoid the obvious complexity of multiple circuit failures, but 
future works can solve this issue. Already, there are methods 
[10] where one system can generates a list of possible faults 
instead of just one.  Another system narrows down the list to 
only a handful of possible candidates. A similar system can 
be implemented with the method proposed in this study.  This 
could be done by selecting multiple categories in the 
classification layer when they meet a certain threshold and 
choosing between them with another network. 

CONCLUSION 
In this paper, an effective method for predicting circuit 
failures in post-market circuit boards through simulation and 
deep learning is proposed and implemented. Normally, such 
failures are hard to diagnosis and difficult to fix. This test can 
be performed quickly to provide results that can lead to circuit 
fixes. We have shown that with a small amount of 
development time, real tests can be created for circuits that 
incorporated this method. The accuracy of the networks 
shown here support the idea that the time saved repairing 
circuit boards using the proposed method can far exceed the 
costs of misclassifications. With verification from real circuit 

boards in operation, we know that our data provides an 
accurate ground truth for the deep network to learn.  
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